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Perturbative QED and QCD at Finite Temperatures 
and Densities 
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The finite temperature and density QED and QCD are discussed from the 
perturbative viewpoint. A comparison between Abelian QED and non-Abelian 
QCD is made at every step. The calculation of the thermodynamic potential is 
performed up to a 2 In a, allowing the masses of the fermions to be arbitrary. 
The equation of state for QCD plasma is obtained and the phase transition to 
the hadronic phase is discussed. 

1. I N T R O D U C T I O N  

It is widely accepted that the known forces between elementary particles 
can be described by gauge theories. The strong interaction is described by 
a non-Abelian gauge theory, quantum chromodynamics (QCD) (for a 
general review, see Marciano and Pagels, 1978), while the electromagnetic 
interaction is governed by an Abelian theory, Quantum Electrodynamics 
(QED), which can be considered as the electromagnetic part of  the low- 
energy limit of  the Weinberg-Salam model (Weinberg, 1967; Salam, 1968) 
describing the unified electroweak forces. The Weinberg-Salam model is 
supposed to unify further with QCD to a grand unified theory (see, for 
example, Langacker 1981). 

Finite temperatures and densities have provided an interesting 
framework for studying gauge theories. It has been shown (Collins and 
Perry, 1975), by using renormalization group arguments, that strong coup- 
ling approaches zero when the temperature or density increases. Thus, at 
high temperature or density QCD matter approaches a free gas of  quarks 
and gluons, and hence perturbation theory becomes reasonable. On the 
other hand, the electromagnetic coupling increases with increasing energy. 
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However, it is expected that grand unification takes place before the QED 
coupling becomes too large, preventing the reliable use of perturbation 
theory. 

The electron gas in metals and the charged plasma in the ionosphere 
are examples where finite temperature and density QED can be applied, 
although its nonrelativistic limit, i.e., the quantum many-body theory (Fetter 
and Walecka, 1971), is sufficient in most contexts. The places where one 
might find a high enough density or temperature so that QCD plasma exists 
are more exotic. One is the cores of neutron stars, where the density is 
much greater than the nuclear density (Baym and Chin, 1976; Keistler and 
Kisslinger, 1976; Freedman and McLerran, 1978; Kisslinger and Morley, 
1978, 1979). Another situation where such extreme conditions existed, was 
the early universe (Linde, 1979; Shyryak, 1980; Kalashnikov and Klimov, 
1981; Suhonen, 1982; Toimela, 1983a; Cook and Mahanthappa, 1984; 
Schramm and Olive, 1983; Witten, 1984). When the universe was younger 
than about 10 -5 sec, the temperature was comparable to nucleon rest ener- 
gies, and quarks were liberated. Furthermore, such conditions can possibly 
be created in the laboratory by means of heavy ion collisions (for the present 
status see Jacob and Satz, 1982). 

The history of the field theory at finite T and/z goes back to the fifties. 
The pioneering work was done by Matsubara (1955). The theory was further 
elaborated especially by Fradkin (1965). Gell-Mann and Brueckner (1957) 
studied the non-relativistic electron gas, while the relativistic case was 
discussed by Akhiezer and Pelerminsky (1960). The extension of the finite 
temperature formalism to general gauge theories was discussed by Bernard 
(1979), Dolan and Jackiw (1974), and Weinberg (1974). 

The purpose of the present paper is twofold. Firstly, we shall present 
some new results corresponding to more accurate calculation of the ther- 
modynamic potential of the SU(N) gauge theory including massive fer- 
mions. Secondly, we want to give a review of the area of the SU(N) theory 
at finite temperatures and densities, in order to clarify several points that, 
in the author's opinion, have not been expressed in the literature in the 
clearest way possible, and also in order to make the discussion in the paper 
more self-explanatory. 

The rest of this paper contains the following: The notation used in the 
text is given at the end of this section. In Section 2 we discuss the general 
formalism of the field theory at finite T and /z. An expression for the 
partition function as a functional integral over the periodic (in the imaginary 
time) boson fields and antiperiodic fermion fields is derived. Furthermore 
the formal technique to work out the Fourier sums, arising from the periodic- 
ity of the space is discussed. In Section 3 we study the polarization tensor 
in both cases, T r 0 and T = 0. The interesting infrared limit is examined 
in more detail. In Section 4 the thermodynamic potential is calculated up 
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to the order o(g 4 in g), allowing the fermion masses to be arbitrary. The 
general formulas are then examined at various limits. In Section 5 we study 
the ground state of  a fermion gas. In the arbitrary mass case the zero- 
temperature limit of  the thermodynamic potential is evaluated up to 
O(g 4 In g) and a nonrelativistic expansion for it is obtained. The equation 
of state is studied in Section 6. Moreover (in QCD),  the phase transition 
to the hadronic phase is discussed. Lastly, in Section 7, we give a short 
summary and outlook. 

1.1. Notations 

The units are standard h = c = kn = 1. 
The metric used is g ~  = (1, - 1 ,  - 1 ,  - 1 ) ,  except in Sections 3.3 and 5, 

where the Euclidean metric (1, 1, 1, 1) was found to be more convenient. 
The Dirac y matrices satisfy the ant icommutat ion relations 

{T,., T.} = 2g,.~ 

2. FIELD THEORY AT FINITE TEMPERATURES 
AND DENSITIES 

2.1. Partition Function 

Our starting point for studying the thermal properties of  any theory is 
the grand partition function 

Z = Tr ex - - 

Here ~ is the Hamiltonian operator, ~ f  and /~ f  are the number  operator  
and the chemical potential, of  particles of  type f fl is the inverse temperature. 
From the thermodynamic potential, defined by 

1 
= - 3 V In Z (2) 

we get the thermodynamic quantities like the pressure p, the entropy density 
s, the average number  density n / a n d  the energy density e, by the equations 

p = - f l  (3) 

af~ 
s = - - -  (4) 

aT  

all 
ns = - - -  (5) 

a/xf 

e = D +  Ts+• tzynf (6) 
f 
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[Our definition for the thermodynamic potential 1), equation (2), differs 
from the usual one by a factor of 1/V.] The thermal expectation values of 
those physical observables that cannot be derived from the thermodynamic 
potential are still needed for the complete description of the theory. They 
are defined by 

In order to be more specific we shall restrict our discussion from now 
on to the S U ( N )  gauge theory, including the appropriate fermion fields. 
However, all that we say in this section is applicable also to QED by just 
changing the S U ( N )  gauge group to U(1). The S U ( N )  Lagrangian is given 
by 

_ ~ F  ~ F ~ - ~ + v  - - ~  , ~  a 6 s ( i D  - ms)q 's  ( 8 )  
f 

where the field tensor F and the covariant derivative D are defined as 

a - -  a - -  r a b c  s, b ~ c  F~,~ - O~A~-  O~A~ -r g j  , a ~ %  (9) 

Dg = 0~, + igA~ (10) 

A problem arises, when we look at the gauge theories: the definition 
of  the partition function, equation (1), depends on which gauge it is 
evaluated (Bernard, 1974). This problem is related to the appearance of 
nonphysical particles in some gauges. Suppose that we work in a gauge 
which exhibits nonphysical degrees of freedom. When we take the trace 
over all states in equation (1), we include also these nonphysical degrees 
of freedom. This is, of  course, incorrect, because the nonphysical particles 
are not in equilibrium with the physical heat bath. 

The correct way to avoid this problem is to define the partition function 
by equation (1), when the right-hand side (r.h.s.) is evaluated in some 
"physical" gauge that does not contain nonphysical states, or take the trace 
only over the physical states. To do this, we follow Gross, Pisarski, and 
Yaffe (1981) and use the Ao = 0 gauge, where the Hamiltonian is given by 

E + ~ F ~ + ~  - " ~ ~Of( -  t 7 D, (11) 
f 

Here E~ = F~o is the canonical momentum conjugated to AT. 
Our state vector space spanned by the vector set {IAT(x))IqJF(X))} still 

contains nonphysical states because the gauge is not completely fixed by 
the condition A ~ ( x ) =  0. Time-independent gauge transformations are still 
allowed. This is reflected by the fact that the Gauss's law 

G a =- V �9 ff_,a + gfabe~bffc + iq~yora b = 0 (12) 
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does not appear in the equations of motion that can be derived from the 
Lagrangian (7), or from the Hamiltonian (11) by using the canonical 
commutation relations. The connection between these two statements can 
be understood by observing that the Gauss' law operator G a generates 
time-dependent gauge transformations. Because the physical states must be 
identified with the states invariant under time-independent gauge transfor- 
mation, the definition of the physical states will be 

Gal~bphys) ---- 0 (13) 

Thus we should insert the projection operator that projects onto the subspace 
of physical states (Callan, Dashen, and Gross, 1978) 

p=f~A(g)  exp[ifd3xA'G a] (14) 

In equation (13), the integration is restricted over the functions A'(g) that 
vanish sufficiently fast at infinity. 

Now the trace in equation (1) can be written as the functional integral 
over the functions that are periodic in the imaginary time 

A~'(s = A~(g, 0) 

(antiperiodic for the fermion fields) (Bernard, 1974). Inserting the projection 
operator from equation (14) into the trace (1) in the following way (Gross, 
Pisarski, and Yaffe, 1981): 

[ (  Z=Nlim Tr P e x p - / 3  N-~ /xsNy (15) 

we get (it "- ~') 

Z : I/ Ai periodic I ~ A ~ A i ~ E i ~ t p  
/4, antiperlodie] 

• - d~" d3x if2+ Fij2-iA'~D'~bEbi-iE i Or 

ty Di + y~ + ms -/~fyo ~ltf (16) 
f 

Note that the boundary conditions of the functions A" at r = 0 and/3 are 
not specified by the construction. As a matter of fact, the partition function 
(15) is independent of the way we choose these boundary conditions 
(Montonen). However, for computational simplicity it is convenient to 
choose also A" to be periodic in the interval/0,/3/. Renaming then A" as 
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A~ and performing the Gaussian integration with respect to E~', equation 
(16) reads 

Z ~  I At.,.periodie ~A~,~q/exp[f;d.cld3x(~+~ylzf~fy~ (17) 
antiperiodic 

The effective action appearing in the exponent of equation (17) is 
invariant under gauge transformations that preserve the periodicity of the 
fields. This invariance is a consequence of the periodic boundary conditions 
we chose for A. Had we imposed different boundary conditions, the set of 
allowed gauge transformations in equation (17) would have been corre- 
spondingly different. In order that each unequivalent field configuration 
will be picked only once, we adopt some gauge condition and apply the 
standard Faddeev-Popov treatment (Faddeev and Popov, 1967; Lee, 1976). 
If we choose a linear gauge-fixing equation 

Fa[A~]- ca(x) = 0 (18) 

where ca(x) is a (periodic) c-number function, we obtain 

Z~f  ~A~qJ~(Fa-C~)det(~ff~) 

•176 ] (19) 

where to in the Faddeev-Popov determinant, det(OF/Oto), parametrizes the 
(infinitesimal) gauge transformations. Everything now works similarly as 
in the zero-temperature field theory. Proceeding in the usual way (Lee, 
1976), we eliminate the 6 function, obtaining instead a gauge-fixing term 
in the Lagrangian. Moreover, the Faddeev-Popov determinant can be rewrit- 
ten as a functional integral over anticommuting (but periodic) Grassman 
fields. The periodicity of these ghost fields is due to the periodicity of the 
Faddeev-Popov determinant. (Recall that the Faddeev-Popov determinant 
represents the variation of the infinitesimal, periodic gauge transformation.) 
Hence r 

Z ~- J ~A,~(b~ODC~C exp Sen (20) 

where the effective action is 

S~= f; d~ f d3x[-1F:~2--1(Fa[ab])2+CaOo~ D~bCb 

+ y~ (Of( iEJ+ lzfy ~ mf )qs:] (21) 
f ..I 
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where Oo should be understood as Oo = Ot = iO, It is worth noting that the 
possibility of carrying out the standard Faddeev-Popov treatment here was 
based on the periodic boundary conditions of the function A. Any other 
choice for the boundary conditions would have led to computational difficul- 
ties. Henceforth, we use the covariant gauge (the Lorentz gauge) 

F"[A~] = -O~*Aa~ (22) 

Thus, in equation (21) the usual effective Lagrangian for the covariant ot 
gauge (added by the number operator terms) appears: 

1 Fa 2 1 (a~,A~)2+o,Oaa~Ca 
-2---g 

be p , - -  b c +gf~ 0 CaA~C +Y.~f(i~+ftfy~ (23) 
f 

From equation (23), we can easily derive the finite temperature Feyn- 
man rules by adding external sources into the partitiofi function and dividing 
the Lagrangian into a kinetic part and an interaction part: ~ =  ~ o + ~ i :  

Z ( J ~ , . . . ) - I  ~ a ~ ' " e x p { f f  dr l d 3 x ~ , ( A  . . . . .  ) 

- - - -  A ~ 2 &,~O 2-  1 - 0~,0~ A ~-  J~,A ~ + . . .  (24) 

Here the dots indicate the corresponding terms for fermions and ghosts. 
The only difference here compared to the vacuum field theory is the finite 
size of the space in the r direction. This finiteness of the interval/0,/3/,  
together with the periodic or (antiperiodic) boundary conditions, lead to 
the energy Fourier series instead of the Fourier transformation, when we 
change to the momentum space. We get 

I Z [ J , , . . . ] ~  ~ A , . . . e x p &  - - , . . .  8J,  

I 

f 
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where A~(n,/~) is the Feynman propagator, with ko=2~-inT. Thus, the 
finite temperature Feynman rules are the same as the T = It = 0 rules with 
the substitutions 

f d4 k (-~)4"-) iTS, f dak 
~o (2~r) 3 

ko = 2nTriT (for bosons and ghost) 

=(2n+l)~iT+It  (for fermions) 

(2'n')4t~(4)(kl + ' "  " + kN)~ --ifl(27r)38k~176 " " " s (26) 

2.2. Evaluation of the Frequency Sums 

The usual way to perform the frequency sums indicated in equations 
(26) is to convert them to contour integrals. The method is based on the 
observation that the function g+(z)=(fl/2) coth(13z/2)(g_(z)=([3/2) 
tanh[fl(z-tt)/2]) has poles at the points z =2~rniT(z = (2n+ 1)wiT+/x) 
with residue +1. Hence the sum over the even (odd) Matsubara frequencies 
can be expressed as a contour integral around the imaginary axis, the 
summand being multiplied by g§ (g_(z)). 

To be more specific, let f (z)  be a function vanishing sufficiently fast 
at infinity. If  f (z) has no singularities on the imaginary axis, the procedure 
leads to the equation 

I"~ dk f~oo+~ f (ko)+f(-ko) dko 
(27) 

When f (z)  has no other singularities than simple poles at the complex 
values z = toa, the equation (27) has the useful form 

[-i~o d L  1 T f(2nwiT)= E  o/T Res f(ko) 
R e  wa>O e -- 1 ko=t%" 

1 
+ E e-tOa/T Resf (ko)  (28) 

R e  OJa-<O - -  l 

For the fermions we get similarly 

f,~o+~+~ UP__9_ ~ f(Po) 
J_~oo§247 21ri e(P~ 1 

f -~+"-~  dpo f(Po) 
- -~oo+,-~ 2~ri e (~ -~~  (29) 
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Here the contour C runs in the Po plane f o r m / z -  ioo to /z + ioo to 0 + ioo 
to 0 - i o o  back to / z -  ioo. Thus the integral over the contour C vanishes 
when/z  goes to zero. On the other hand, the last two terms vanish at zero 
temperature. 

In the case of simple poles we get the simplified form 

f ~  2dP~. 1 Res f(p0) r ~ f ( ( 2 n + l ) ~ i r + t z ) =  f(po)+ ~ e(,%_~)/r+lpo~,o~ 
n - - ioo  R e  <Oa>O 

1 
- F, e( ~,o+~)/T+I Res f(Po) (30) 

R e  ~o a < 0 Po = ~~ 

When the left-hand side (1.h.s.) of equation (30) represents some physical 
quantity (instead of having just a virtual nature), we can give a transparent 
interpretation to the terms in the r.h.s. The first is the infinite vacuum 
fluctuation, the second and third correspond the contribution of the fermions 
and antifermions, respectively. 

3. POLARIZATION TENSOR 

3.1.  Tensor  Structure  

In this section we shall study the polarization tensor. We shall first 
derive the general expressions for nonzero T and/z.  The zero-temperature 
(but finite /z) equations are then obtained as the appropriate limit. We 
concentrate here on QCD; the QED tensor can then be found as a special 
case. 

The polarization tensor is defined by the Dyson equation 

o Go r r ~  (31) 

where ~ o  and ~ are the bare and exact gluon propagators, respectively. 
The vacuum polarization tensor that can be formed from the Lorentz tensors 
g ~  and k~k~ satisfies the constraint 

k~lT"~(k) : 0  (32) 

which leads to the equation 

II(ffC)(k) = ( k2 g~ - k~k~)II(vac)( k 2) (33) 

At finite temperature, equation (32) is no longer valid. Moreover, owing 
to the existence of a preferred Lorentz frame, the rest frame of the heat 
bath, the polarization tensor is no longer restricted to be Lorentz covariant, 
but only 0(3)  covariant. So, we can express the polarization tensor by four 
independent symmetric 0(3)  tensors that we can choose to be, for example, 
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the following (Gross et al., 1981; Kajantie and Kapusta, 1985; Toimela, 1985) 

Aoo = Aoi = Aio = 0 

A~ = 6ij - kikj/ ~2 

B~,~ = k,~k~/ k 2 - g ~  - A ~  

1 
C ~  = x/~l/~l [(g~0 - k~ko/ k 2) k~ + k~ (g~o - k~ko/ k2) ] 

D ~  = k . k . / k  2 (34) 

If  we use the definition (31) and the Ward identity 

k .k~N"~ = - a = gauge parameter 

we can write H~. in the form (Kajantie and Kapusta, 1985; Toimela, 1985) 

t2 2 
[I~v = ( a - k 2 ) a . v  + (b - k2)B~v + c G v  + - ~  D~,v (35) 

where a, b, and c are functions of the variables ko and/~. 

3.2. Polarization Tensor in One-Loop Level at Nonzero Temperature 

At the one-loop level (second order in the coupling constant) we divide 
the polarization tensor as follows: 

I I ~  = F[(vac)+AllQ + A H  o (36) 

where the vacuum part, H (va~ is of the form (33). In the massless limit 
II (w~ is (in the momentum-space-subtraction scheme) (Celmaster and p.v 

Sivers, 1981) 

11 M~ = [ ( - 1 3 + 3 a ) N + 4 N s ] ( k Z g . ~ -  k.k~)ln (37) 
- - ~  96 ./.r2 

Here and hereafter we shall delete the trivial color index dependence 6 "b. 
In equation (37), - M  2 is the Euclidean subtraction point. 

The quark loop (Figure la) contribution to the matter part of the 
polarization tensor is 

I d3 p + 
AI"IQv = - - 2 g 2 ~  r 2 ~-j3{[2p~p~ k . p ~ + k ~ p ~ - g ~ ( p e + k p - m 2 ) ]  

f Po 

/ ( p 2 _  mE)[(k + p ) 2 _  m21~ _ FI p(~r ... ~ __~ (38) 

Here we have already subtracted the vacuum part [that contributes to 
equation (37)]. The remaining matter part is entirely free of ultraviolet 
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(a) 
(b) 

(c) (d) 

Fig. 1. 

(e) 

The polarization tensor at the one-loop level: (a) quark loop, (b, c) gauge loops, (d) 
ghost loop, (e) counterterm. 

divergences and needs no renormalization. The renormalization affects only 
the vacuum part, equation (37). The corresponding QED tensor is given by 
equation (38), replacing 

g2/2~ e 2 (39) 

The last term in equation (36) is a pure non-Abelian contribution, arising 
from the diagrams ( lb-d)  and has the form (Kalashnikov and Klimov, 
1980a, 1981) 

Ng2 f d3 q 
AII~L= 213 ~ ~ (-~)31l'~8%q~-g~(aq2+Sk �9 q ) - 2 k ~ k ~ + a % k ~  

+4k~q~]/q2(k+ q)2_2(a - 1)[g.~(4(k" q)2 

+ 2q2k �9 q -  q2k2 ) + 2k2 %q~ 

+ q2k.k~ _ (q2+ 3k" q)(k.q~ + q.k~)]/q4(q + k)2 

+ (a - 1)2(k,k~(q �9 k)2+ q~q~,k 4 

- k2k �9 q (k ,q ,  + q~k~)]/q4(q + k) 4} - I I ~  vac) (40) 

In order to get better insight into the structure of the polarization tensor 
we'choose the Feynman gauge (a = 1) and perform the summation and the 
integrations over the angle variables in equations (38) and (40). Setting 
(a = 1) in equation (40) we note immediately that at this one-loop level 
I I~  satisfies the transversality equation (32). This transversality allows us 
to write the polarization tensor in the form 

AFl~"(k) = (k~k "-g'~'k2)AII~176 +�89176176 + A[I~Ic2/k 2) (41) 

For the functions AH ~176 and AH~ we get the following expressions (Kapusta, 
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1979b): 

An ~176 g2 f O app2 ~ 4E2_to2_(27rnT)2 
=2~---5~f Jo ( - - n P  1+ Ep 8 pto 

[(27rnT)2 + to2 + 2pto]2 + 4E2v(2zrnT)2 
•  

((2 zrn T)2 + to2 _ 2pw)2 + 4E2p(2zrnT)2 

2 ~rn TEp arc t 167rn TptoEp 
an [(21rnT)2 + to2]2+4E2(2rrnT)2_4p2to2 j 

+ ~-2 I o  dqqNq [ l _~ 4g2-(2rrnT)2-  2to2 
8qto 

[(2rrnT)2 + to2+ 2qto]2 + 4q2(2~nT)2 
•  

[ (27mr) 2 + w 2 _ 2qto] 2 + 4q2(2zrnr) 2 

2 ~n T 16~n'n Ttoq 2 
arc tan 

to [(2~nT) 2 -'~ (002] 2 ..~ 4q2(2 7rnT) 2 - 4q2to 2 

A I I : =  ~5 ~f E----~-nv 1+ 4pto 

�9 [(2~rnT)Z+to2+Epto]2+4E~(2rrnT):'l x,n j 
5[(2~rnr)2+ to2] + Ng2 f ~176 dq qNq 2 

Oo 8qto 

x" [(2~rnT)Z + wZ + 2qto]2 + 4qZ(27rnT)2"] 
m [(2~nT)2 + to2_ 2qto ]2 + 4q2(2crnT)~J 

(42) 

(43) 

Here 

Ep = x/(p2+ m}) 1/2, n = ko/27riT, to = [k I 

1 1 
np = np.-b np  -- e~(~_.~ + -~ eF3( Ep +t-Q _[_ 1 1 

1 
Nq = e~ q _ 1 

Note that here the polarization tensor is given only at points k0 = 2r 
n c Z. The formulas (42), (43) should be continued analytically if one needs 
I I ~  in the whole complex plane. This is the case if one wants to study the 
plasma oscillations, for example. At the arbitrary complex values of ko the 
polarization tensor acquires an imaginary part, unlike at the pure imaginary 
values of ko, where I I ~  is purely real. 
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The most interesting limit here is the static (/Co = 0) infrared domain. 
From equation (42) we get 

AH~176 dP ] y z n (p2+ 

- Ng2To)/4+ O(w 2 In o9/T) (44) 

As a matter of fact these first two terms are independent of the gauge 
parameter. One can obtain them from the general formulas, equations (38) 
and (40), and find that the gauge-parameter drops out. The reader could 
ask whether these terms are really gauge invariant or independent of the 
gauge in this particular gauge class only. The answer is not known. However, 
the latter possibility seems to be unlikely. As we shall see in the next section, 
these two terms are related (at least in the covariant gauge, we use) to the 
orders of O(g 3) and O(g 4 In g) in the perturbation expansion of the ther- 
modynamic potential. These orders should be gauge invariant because the 
thermodynamic potential is a physical quantity and its gauge dependence 
which is compensated for by the gauge dependence of the coupling constant 
does not appear until the order O(g4). Of course, it is possible that there 
exists a pathological gauge in which IIoo has a different static behavior at 
long wavelengths than it has in the eovariant gauges. However, in this case 
the orders O(g 3) and O(g4/ng) of the thermodynamic potential should be 
generated in a different way than in the covariant gauges, in which they 
appear as a summation of the infrared behavior of the ring diagrams (see 
the next section). Hence, the existence of such a pathological gauge is not 
out of question, but is rather hard to imagine. In order to see what is the 
gauge dependence of the next term ( - w  2 In to~T), we use equations (38) 
and (40) instead of equation (42). We consider for simplicity only the 
transparent massless limit, obtaining 

oo = Ng2T2(2N+ Nf+3 ~l.t}/T2~2)/ AH(o,~) 6- Ng2Tw/4 
f 

g2 to 
+96 2[(-13N+3oz)N+4Nf]to21n--~+O(to2 ) (45) 

Thus, the _to2 In w/T term (and all the higher terms to) depends on the 
gauge. 

Furthermore, the spatial part AH,~ has the form (in the massless limit) 

AH~(O, to)=-(8o-kikj/~) (a2+2c~ +g) toT 

g2 to2) 
+96 2[(13-3a)N+4Ny]toZln-~-5 +O(to 2) (46) 

where even the - t o T  is gauge-parameter dependent. 
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Taking equations (46), (47) into account we can write at ko = 0, to -~ 0 

8~~176 6u~ir"J (47) 
- i ~ , , (  ko=O, to~O)-----to2+AHoo(O,O) ~ to2 

So, we can interpret equation (47) by saying that the thermal fluctuations 
have generated an electric mass m~2~ = AIIoo(0, 0) for the static electric fields, 
but the static magnetic fields are unscreened at the one-loop level. However, 
we must be very careful in our interpretation because the polarization tensor 
is a gauge-dependent quantity and its static infrared limit is gauge invariant 
at most up to the lowest order (see the discussion in Section 4). 

Note the similar structure of the logarithmic terms in equations (45), 
(46) compared with equation (37). Hence, if we add the vacuum part IIvac 
to AH, we find that the term proportional to to2 In to disappears in H,~(0, to). 
A similar cancellation has been reported by D. Gross et al. (1981) in the 
limit ko# 0, to-~ 0. As a matter of fact, the term - - k  2 In k 2 in the vacuum 
polarization tensor will be canceled at every value of ko and/~, by the similar 
term in the matter part. This can be seen by examining how these logarithmic 
terms arise from the frequency sums. For this, let us consider some arbitrary 
sum in equation (31). We can write it as 

Tvf(qo.~_,k) 1 (1 1 ) 
q2 -- I01 el~ 1 f(qo = Iol, o, k ) §  (48) 

where the dots indicate terms arising from the poles of the function f(qo). 
The vacuum part comes from the constant term in the brackets after 
integrating over the t~ space. The Bose-Einstein distribution in the brackets 
gives the matter part and its logarithmic terms arises from the ~-independent 
term in the expansion 

1 T 1 
e q/T-1 q 2 F O(q) (49) 

when integrated over the small q domain. This term k 2 In k 2 / T  2 added to 
the vacuum polarization cancels the logarithmic dependence o n  k 2 there, 
leaving a term - - k  2 In T2/-  M E. 

What is most important in equations (45), (46) is the appearance of 
the linear terms. Such linear terms do not exist in QED, because they arise 
from the gluon and ghost loops (Figure 1c-d). Nevertheless, this 
phenomenon is not associated with the non-Abelian character of QCD, but 
it is rather a bosonic behavior. It occurs also in scalar electrodynamics 
(Kalashnikov and Klimov, 1980b; Toimela, 1983a). 
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3.3. Polarization Tensor at the Zero Temperature 

We shall now discuss the zero temperature limit of the polarization 
tensor. In Section 3.2 we gave the expression for II~(qo,  q) at the set of 
the imaginary values qo = 27tinT, where n ~ Z. At the zero temperature limit 
we shall need its expression for qo = i4o, where qo is real and continuous. 
This analytic continuation from the above-mentioned distinct points to the 
whole imaginary axis is not unique, but becomes uniquely defined, when 
it is required that II~,~ do not have an essential singularity at qo = oo. 

We find it more convenient to use here the Euclidean metric instead 
of the Minkowski metric. The Euclidean polar coordinate q, 05, O, q~ are 
defined through the equations 

q = (t~oZ+ ~2)1/2~ (_q2+  ~2)1/2 
(50) 

05 = arctan (Iq[/qo) 

0 and q~ are the angle variables of the original three-space. By using these 
polar coordinates we write the zero temperature limit of equations (42), 
(43) in the form 

g2 ~(~}_m})1/2 dv f 4E 2_q2 
AII~176 05' ")= ~ % Jo ~p p2[l-J 8pq sin 05 

• ( q + 2 p  sin ~b)2+4Ep z cos 2 05 
(q - 2 p  sin 05)2+4E2 cos 2 05 

8pEp sin 05 cos 05 1 
-- EP COtp 05 arctan q2+ 4-~p co'~-~-_-~p5 sin2 05] 

(51) 

"--~g2 f~-m~)*/~ dpp2[1 ~ 2m~_q2 
AII~(q, /x) 

= - - j  Jo Ev 8pq sin 05 

( q + 2 p  sin 05)2+4E2p cos 2 05] 
xln (q-2p sin q~)2+ 4E2 cos 2 05 (52) 

These equations are, of course, gauge invariant. 
The integrals of equations (51), (52) can be done in a closed form (see 

Appendix A for the details). The resulting formulas are 

A I I o o _ ~ { ~ / z ( / ~ 2  m2)1/2 q 2sin2 051n/~+(/z2--m2)1/2 
f 6 m 

q 4/x3 -- 3qE/x In 4/z2 cOs2 05 + [2(/t2 - m2)a/2 sin 05 + q]2 
24q sin 05 4/z 2 cos 2 05 + [2(/x 2 -  rn2) 1/2 sin 05 -- q]2 
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q ( 2m2-  q2)(q2+4m2)1/2 sin 2 05 
24q 

2ixa(2m2 + q2) _ 2ixq(q2+4m2)~/2(ix2_ m2)~/2_ m2(q2+4m 2 sin 2 05) 
x In ~ q2) + 2ixq(q2 + 4m2)~/2(ix2 _ m2)~/2 _ m2(q2 + 4m ~ sin 2 05) 

1 1 + 2 sin 2 05 
- 2  (Ix2 12 q2) cot 05 

L r Ix(Ix2-- mZ)l/2 sin 205 ]~ x arctan (53) 

_ g9_2 ( q2 tx + (Ix2_ m2),/2 
A H ~ -  2~r2~ Ix (IX2- m2)1/2--�89 - ln  m 

2m2_q~~ IX ln~22cos 205+(2(Ix2-me)l/2sin05+q)2 (q2+4m2),/2 
-~ 4q l sin 05 4Ix cos2 05 + (2(IX2- m2)a/2 sin 05 - ~  -~ 2 

2ix2(2m2 + q 2) _ 2ixq( q2 + 4m2) l/2(ix2 _ m2) ~/2 _ m2( q2 + 4m 2 sin 2 05) 
xln 

2ix2(2m2+ q2) + 2ixq(q2+4ma)1/2(ix2 m2)~/2_ m2(q2+ 4m 2 sin 2 05) 

[ IX(IX2- m2)~/2 s_in 2~ ] ~ ]  
- q  cot 05 arctan ]IX2 cos 205 + m 2 sin 2 05 + q2/4.]J,] (54) 

The ultrarelativistic limits (m = 0) of these equations agree with Kapusta 
(1979b) 

z [~ IX(4IXR_3q2) cos2 05 + (sin 05 + q/2ix)2 
AIIoo(m =0) = ~g-~5 Y~ IX 2"4- In 

zz" s 24q sin 6 cos2 05 + (sin 05 - q/2ix) 2 

q2 sin2 05 in (1 + 8IX2 cos 205 16IX4\ 
- 24 q2 q- - -~ - - )  

( ) ( sin205 ] l  1 2 1 +2 sin 2 05q2 c o t  05 arctan 
- 2  IX 12 cos205+q2/4ix2]J 

(55) 

~H~(m=O)=2-~2Z[IX2-  % lnCOS205+(sin05+q/2ix) 2 
y sin6 cos 2 05 + (sin 05-q/2ix)  2 

- - - I n  1-~ 8Ix2 cos 205 16IX4"~ 
8 q2 ~---~---) 

)] .q ~ arctan kcos 205 + q2/4 (56) 
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In Section 5 we shall need the zero momentum limit of the polarization 
tensor. In this limit equations (53), (54) reduce to 

2~2 { 2__ 2 1/2 AH0o(0, qS)= ~ /~(~2-m2)l/2-/z2cot~barctan[ (~---m~) ]~ (57) 
f k ~zcot~b / J  

-g--~= { t.[("~-m=)l/21~-~-~-ot #, J)  AII~(0, ~b)-2 2~y tz(l~2-m2) ~/2-m2cot 4~ arctan (58) 

Turning to QED by the substitution (39), we find the above results, equations 
(57), (58), to be in agreement with those of Akhiezer and Peletminsky 
(1960), after the correction of a typographic error in their paper. 

4. THERMODYNAMIC POTENTIAL 

4.1. Ideal Gas of Quarks and Gluons 

We shall now compute the thermodynamic potential in the perturbation 
theory up to the few lowest orders. The calculation can be carried out by 
using the definition (8) and the formulas (19)-(22). The ideal gas limit is 
obtained by putting g = 0 and then performing the Gaussian integrations 
in equation (20). The integrations give 

ao = - -~  In det 1/2(02g~'~ab) det(026 ab) H det( i~/-  ms) , (59) 
f 

where the three determinfints originate from gauge, ghost, and fermion 
fields, respectively. The gauge and ghost determinants should be evaluated 
on the space of periodic functions, while the fermion determinants on the 
space of antiperiodic functions, as discussed in Section 2. In the fermion 
determinant, 0 s should be understood as 

~: = iT~ - tz s) + ~. V (60) 

It is worth noting that also in QED we have the ghost determinant, if 
the covariant gauge is used. It is necessary to take this ghost determinant 
into account in order to get the familiar black-body radiation formula with 
the right coefficient (Bernard, 1974; Shuryak, 1980). However, the ghost 
does not have interactions in QED, hence there the ideal gas formula (59) 
is the only place where the ghost appears to have any contribution. 

The determinants in equation (59) can be evaluated in the momentum 
space using the technique described in Section 2.2. After subtracting the 
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vacuum contribution we get 

[.~o= 7r2 2 1)T4 - N [~ 1 1 ) (61) 
45 (N ~--~2~y Jo Ep \e(E'-~s)/T+I q-e(~+'I)/T+l 

This equation could have been written down immediately without using the 
whole machinery developed in Section 2. However, we consider it useful 
to demonstrate how the ideal gas formula emerges from the theory. Further- 
more, the way we have derived equation (61) illustrates the role of the ghost 
and shows how they cancel out the contribution of the superfluous degrees 
of freedom appearing in the gauge propagator. 

In the ultrarelativistic limit (my= 0), the fermion integral results in a 
fourth-order homogeneous polynomial of the variables T and/zy: 

f~o(m =0)=-4---5 T4 N 2 - 1 +  NNf 

(62) 

On the other hand, at low density /z '= my<< f jl~f- rnss T, we can use the 
classical statistics approximation replacing the Fermi-Dirac distribution by 
the Boltzmann one. The integral can then be expressed by the Bessel function 
of the second order, K2(z) in the following way: 

N T  
12o =-2-5"2 T2Y~ m}K2(my/ T)e ~)/r- "" T4(N 2-  1) 

"/'/" f 45 
(63) 

The nonrelativistic limit (T<< mF) of this formula is 

2N T 5/2y, m}/2 e~)/T (64) 
12o- (2~.)3/2 f 

4.2. Beyond the Ideal Gas Approximation: The Exchange Energy 

For calculating perturbative correction to the ideal gas formula (61) 
we use the old trick of differentiating [l with respect to the coupling constant. 
Hence, we have the equation 

Io ; "  ,012 
a(g)  = a (0)+  ag ~g, (65) 
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The derivative Ofl/Og can be expressed in the form (Kalashnikov and 
Klimov, 1981a; Kalashnikov, 1984) 

- G ( k ) Z G ( k ) + l y . I ~ F g : ~ ( k , q , -  k . . '  -q)~,~a,(k) 
6fl qo 

x ~,~,;(q)~,'(k+ a'b'c' k+ q)] (66) q)F~,~,A,(-k, -q ,  

Here (k), SF(k), and G(k) are the exact gauge, fermion, and ghost propa- 
gators; II is the polarization tensor discussed in the preceding section, and 
Z~ and Zy are the (one-particle irreducible) self-energies of ghost and 
fermions, respectively. Fo and F are the bare and exact three-point functions. 
The sum over/Co should, of course, in the second (fermion) term count the 
odd Matsubara frequencies, while in other terms it runs over the even 
frequencies. Equation (66) is expressed graphically in Figure 2. In QED 
we have only the two first terms in equation (66), which moreover appear 
to be equal there. Hence the correspondent QE, D formula is rather simple. 

The first perturbative correction (of the order g2) is found by replacing 
the exact propagators and the vertex function F by the bare ones and taking 
into account the lowest-order diagrams in the self-energies. The contributing 
diagrams are shown in Figure 3. 

When we calculate these diagrams, we encounter ultraviolet divergen- 
cies. However, because only the energy differences are measurable, we 
subtract the infinite T, ~-independent vacuum contribution from these 
diagrams. After this the T, /z-dependent infinities arising from diagrams 
(3a-d) cancel against the infinite counterterm diagrams (3e-g). What 

�9 
Fig. 2. Graphical representation of equation (66), The wavy, solid, and dotted lines with a 

shaded "bubble," correspond to exact gauge, quark, and ghost propagators, respectively. 
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(o) (c) 
(b) 

(d) (e) 

Fig. 3. 

�9 
(f) (g) 

O(g 2) contributions to the thermodynamic potential. 

remains is the finite part of the diagrams (3a-d), that is (Kapusta, 1979a), 

- (N2-1)gET2 V f~ 2 n gEN(N2 1) T4_F 
~(exch)-- 144 24"n" ~ L EpP p 

q (N_2- 1)g2)~ [~  dp dq 2 2 [ { 2 + m } l n  EpEq- m~-pq'~ 
327r 5 : Jo EpEq p q L ~ pq EpEq - m2: + pq) 

X(npnq+ + + np nq ) 

+ 2 + " ' :  In (n;n-~+nqnp) (67) 
pq EpEqq- f - p q /  _1 

We refer to this term as the exchange correction, because its zero temperature 
limit is the exchange energy corresponding to the process where fermions 
change their places in the Fermi sphere. 

Here it is worth mentioning something about our way of performing 
the frequency sums discussed in Section 2. We have used the analytic 
continuation in order to calculate the sums by the contour integral method. 
However, because the original frequency sum was over a set of distinct 
points having no convergence point in the finite complex plane, the analytic 
continuation is not unique. Consequently, as found already by Kapusta 
(1979a), the result will depend on what order we perform our sums (more 
precisely: it will depend on what sum is eliminated by the energy conserving 
Kronecker delta associated with the vertices). The way to avoid this problem 
is to replace the Kronecker delta by its integral representation as discussed 
by Norton and Cornwall (1975) and by Kapusta (1979a), if the sums are 
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performed via equations (27) and (29). Let us stress here that all the 
ambiguities arise because of the nonunique analytic continuation. It is 
entirely possible to obtain the right result by direct summation (Kapusta 
1979a), i.e., using the contour integral method but doing the frequency sums 
one by one, by deforming the contour of first integral to infinity according 
to equation (28) before the second summation will be done. However, this 
method will be more laborious than the method used by Norton and 
Cornwall and by Kapusta. 

The massless limit of equation (67) can again be obtained exactly: 

~"~exch(m=O)---- 144  g2T4 N +  Ny+g• /z}/2~2T2+/x}/(2r 2 
f 

(68) 

whereas the nonrelativistic, low-density limit,/~)<< T<< m I is 

N 2 - 1  g2T2~ " m~.e2~)/T (69) 
~exch - 32,n.4 f 

4.3. Correlation Correction 

In Section 4.2 we calculated the thermodynamic potential at the two- 
loop level. If  we want to extend our perturbative calculations up to the 
three-loop level, we encounter infrared singularities. Furthermore, at higher 
loop levels the infrared divergences become more severe order by order. 
The appearance of these divergences can be understood through the screen- 
ing effect. This screening is caused by the effective mass acquired by the 
timelike gluons at the one loop level [see equation (44)]. In the normal 
expansion of the perturbation theory the exact gluon propagator in equation 
(66) will be expanded in terms of the polarization tensor and the bare 
propagator in the following way: 

= 9 ~ ~ ( - n ~ ~  (70) 
n=0 

In this series, the higher terms become increasingly worse infrared divergent 
owing to the nonzero value of the timelike polarization tensor at zero 
momenta. 

The way to overcome this problem is already known in nonrelativistic 
many-body theory (Gell-Mann and Bruckner, 1957; Fetter and Walecka, 
1971). We must resum the series in equation (70) (i.e., sum the ring diagrams 
shown in Figure 4) in order to obtain an infrared convergent expression. 
Note that we need sum only the contribution of timelike gluons to obtain 
the dominant contribution of the correlation term (the so-called plasmon 
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Fig. 4. The ring diagrams contributing to the correlation term. 

term): 

N2-1 f d3k [ ( - ~ ) - I I ~ 1 7 6  (71) 
Oplas= 2/3 ~ ~-~-~ In l +  /~2j 

Here as everywhere else in this section, H refers to the renormalized 
polarization tensor. 

The contributions of the ring diagrams (Figure 4) corresponding to the 
spatial gluons can be divided into two parts: the infrared convergent three- 
loop contribution 

N 2-1 ~ d3k (2) 2 ~(T4)-- 

and the contribution of the remaining, infrared divergent, diagrams 

~est)  = N2- 1 f d3k fl ~ ~-~[ln(I+IIT/k2)-IIT/k2+(II~))2/Ek 4] (73) 

Hr(k0/c) is the combination of the components of the polarization tensor 
corresponding to the spatial gluons: 

IIr(ko,/~) 1 = ~(YI ~ (ko,/~) + Iloo(ko, k) k2//~2) (74) 

The superscript 2 refers to the order of perturbation in the coupling constant 
g. The contribution of equations (72) and (73) are of the order O(g 4) and 
O(g 6 In g), respectively. We shall omit them here because we will extract 
only the contributions up to O(g 4 In g). To be consistent we shall also omit 
the other three-loop diagrams not included in the first diagram of Figure 
4. They will all contribute to the order O(g4). Moreover, we use the 
expansion 

N 2 -  1_ f d 3 k  [ -2 
~plas = 2fi ~ J  L ln(l+ n~176 )-Anoo/ 72 

_ ( i I  ~o ; .C))2 /2 /~4_ n ..~ O(g5) (75) 

The last two terms are infrared convergent and of the order O(g 4) and will 
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hence be ignored. Further, we replace AIIoo by its second-order counterpart 
Ar[(2) because the higher corrections to AH will give rise to higher correc- 1~-00 , 

tions to ~ only. 
Using equation (71) or (75) we have cured the infrared divergences. 

However, after ignoring the contribution of -*oon(Vac), the formula (75) is still 
logarithmically ultraviolet divergent. As we shall see in the next section, 
the situation at T--0 is different. There the correspondent equation (102) 
is free of ultraviolet divergences. This difference arises from the self-interac- 
tion of gluons that contribute at T r 0 already at the lowest order in 
perturbation theory. The ultraviolet divergent ring diagram is the first 
diagram in Figure 4, where both polarization tensor insertions correspond 
to the graph (1.b). The ultraviolet divergence of this diagram, with the other 
three-loop diagrams, not included in Figure 4, cancel the divergence of the 
counterterm diagram associated with the vertex corrections of Figure 3b. 
However, we shall not go into the renormalization of the fourth-order 
diagrams, because it will affect only the term of the order O(g4). Instead 
we shall concentrate on the infrared structure of the diagrams, because this 
infrared structure will give the nonanalytic terms in g2. 

Using equation (42) we find that 

AII(o~)(n, 0) = 0, n # 0  (76) 

Thus, when n r 0, we can expand the logarith in equation (71) up to the 
fourth order. Hence, the only term that gives a contribution below the order 
O(g 4) is the n = 0 term. We divide this term into two parts: 

N 2-1 ( "  d3k[  [ A(0)] ~ ]  
CI plas _ _  
~ 1 7 6  - 2 e  J --] (77) 

and 

N2-1I d3k( 2 A(w) -A(0)~ 
c}plas - -  In{J1 +A(w)/w ]/[1 +a(0)/W2]} �9 

Here we have used the shorthand notation 

a ( o , )  (:) = anoo  (o, o,), ,o = 1171 

(78) 

The integral in equation (77) is easily integrated, giving (Kapusta, 
1979a) 

N 2 -  1 

12~r 

N 2 -  1 

12~r (79) 
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Ignoring again O(g 4) contributions we write f~2 pl~) as 

N 2 - 1 T { ( ~  A(w)A'(oJ)d___~ 
~r-~(plas)__ 127r ~ . . ~  l + A ( w ) / w  2 to 

Io ~ A(0)[A(w)-  A(0)] do 1 
+2 2t1  a -Z77 O 7k / qj (80) 

In the numerators we use the approximation 

A(w) - A(0) -~ wA'(~o) =-1 +A'~/)T2 (81) 

and in the other places in equation (,80) replace A(~o) by A(0). Note that 
the possible approximations for the function A'(w) have some arbitrariness. 
Every sufficiently regular function, having no other g dependence but being 
proportional to g2, and having the same behavior at small w [-A'(0)] ,  and 
vanishing at large w, can be used to mimic the function A'(w), and will 
give the same result [apart a term of the order O(g4), which we are not 
interested in]. After the substitution of equation (81) to (80), the integrals 
can be worked out, exactly, giving 

N 2-1  TA(0)A'(0) In a(0) + f~?tas)= 8~r 2 - - ~  O(g 4) (82) 

By inserting A(0)=AIIoo(0,0) and A'(O)=[OAIIoo(O,w)/Ow]],o=o from 
equation (44) to (82) we get 

a~l~s)--N(N~-l) r~ r~+~, l-~ f aP (2p2+m~)np -t-O(g 4) (83) 
327r 2 f zTr Jo Ep 

The contributions of the order O(g3), equation (79), and O(g 4 In g), 
equation (83), have a simpler form in the zero-mass limit (Toimela, 1983b): 

~(plaS)(m=0) = N 2 - 1  T4/N 1 ~,f]d~'~3/2g 3 
- 12----7- ~3+-6 NS+2-7~) 

N ( N 2 - 1 )  T 4 ( N +  1 N + s g4 
32~r 2 \ 3  6 * 2~2T 2} l n g + O ( g 4 )  (84) 

It should be noted here that equations (79)-(84), although valid at 
every T # 0, do not represent the dominant contribution of the ring diagrams 
(Figure 4) at low temperatures. The higher terms (in g) are small only when 
T >>/zy. The coefficients of these higher powers (gn, n >- 4, also g" In g, n - 
5) are functions of the ratio T/txy and these functions actually diverge when 
T/IzI-+O. Hence, although both corrections (79) and (83) vanish at zero 
temperature, we cannot conclude that the correlation at T = 0 is of the order 
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O(g4). AS a matter of fact, the divergences in these coefficient functions of 
the higher powers sum up at T=  0 giving a contribution of the order 
O(g 4 In g). We shall see this in the next section where we shall calculate 
this order explicitly. 

The logarithmic term in equation (84) does not have any counterpart 
in the Abelian QED. However, it is worth noting that the thermodynamic 
potential is not the only place in QCD where that kind of behavior appears. 
Jackiw and Templeton (1981) have reported similar logarithmic behavior 
in the three-dimensional field theory. Nevertheless, these two things have 
different origins, f~v~as~ in the thermodynamic potential is related via 17oo 
to the electric fields. On the other hand, the three-dimensional (Euclidean) 
QCD corresponds to the high-temperature behavior of the magnetic fields 
at the length scale ~:~> (g2T)-l, where the electric fields are decoupled due 
to the electric mass (Appelquist, 1981). 

Comparing equation (84) with (68) we see that the correlation terms 
overwhelm the exchange term, unless g2 is extremely small. This paradox 
can be explained by taking into account the "modified plasmon" (K~illman 
and Toimela, 1983). Both terms of equation (84) are related to the polariz- 
ation tensor by equations (79) and (82). The limit AIIoo(0, 0) appearing in 
those equations is calculated up to the third order _g3 (Kajantie and 
Kapusta, 1982) resulting in 

0) = AH~o2o~(0, 0) - 7 5  Ng2T[AH~o~)(0, 0)] 1/2 AIIoo(O, (85) 
IOn" 

The substitution of equation (85) into (79) and (82) represents the "modified 
plasmon." Equation (84) then reads 

~(plas) = _ (N  2 _ 1) T[An~o~(0, 0)]3/2/127r 

-(N2-1)T2/32~2AII~o2o)(O, 8) ln(AIICo2o)(O,O)/T 2) (86) 

where in the small fermion mass limit 

AHoo(O, O)=(2N + Nf + 3 ~f tz~/ Tr2T2) g2T2/6 

( - 5 N  2N+Nf+3Y, lz}/er2T 2 g3T2/16V'-67"r (87) 
f 

The modified plasmon terms could be expanded by powers of g2, and they 
differ from the naive plasmon for the first time in the order O(g4). The 
reader may wonder why this higher-order contribution has been taken into 
account, because we have not calculated the other O(g 4) terms, and 
especially because there exist two ambiguities with this modified plasmon. 
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Firstly, it has been evaluated in the temporal axial gauge, where the fields 
Ai(x) are not periodic in the imaginary time, and thus the true Feynman 
rules are not known. Secondly, the modification for the plasmon terms as 
defined through the O(g 3) correction in Iloo(0,0) is gauge dependent 
(Toimela, 1985). [Equation (85) is valid only in the temporal axial gauge.] 

We shall answer these questions here. Let us first consider the problems 
with the temporal axial gauge at finite temperature. It is true that for a 
given periodic A~(x)  in the action of equation (16) there is not necessarily 
any periodic gauge transformation that leads to a potential having A~(x) = O. 
If  we anyway, use the Ao = 0 gauge, the fields Ai(x) are no longer periodic 
and we expect to obtain Feynman rules that are the usual finite temperature 
Feynman rules plus some corrections. It is not known in which order of  
the perturbation theory these corrections appear for the first time. However, 
by ignoring these unknown corrections some gauge-invariant quantities 
have been calculated in the Ao = 0 gauge yielding the same results as in the 
other gauges. In this way, the plasmon term of  the thermodynamic potential 
has been evaluated up to O(g3) in the Ao = 0 gauge (Kfillman and Toimela, 
1983) and the result agrees with equation (79) here. The O(g 4In g) term 
has not been calculated in the temporal gauge, but it is immediately clear 
by virtue of  connected results (Kfillman and Toimela, 1983; Toimela, 1983b) 
that the same result as our equation (83) will arise also in the Ao = 0 gauge. 
Those plasmon terms mentioned above are interesting in this context because 
they are obtained by an analogous summation of the infrared divergent 
diagrams as should be done for obtaining the O(g 3) correction to 1-[oo(0, 5). 
Hence it seems that whatever the corrections to the periodic rules in the 
Ao = 0 gauge are, they do not affect the dominant infrared structure. Thus, 
we expect that 17oo(0, 0) up to O(g 3) is not affected by the nonperiodicity 
corrections of the Feynman rules in the Ao = 0 gauge. 

The "modified plasmon," if defined through the O(g 3) correction in 
IIoo(0, 5), is gauge dependent, but so are also all the terms of the order 
O(g 4) or higher, owing to the gauge dependence of the coupling constant. 
Hence we must accept the gauge dependence of the O(g 4) term (as a part 
of the renormalization prescription). One can ask what gauge choice will 
give the best convergence of  the perturbation expansion (i.e., in which gauge 
the higher order corrections will be small). It has been argued (Celmaster 
and Sivers, 1981) that the axial gauge will be the best choice because it has 
no spurious degrees of freedom. However, after choosing the axial gauge 

n~A ~" (x) = 0 

we must further specify the vector n~. We shall argue that the best choice 
here will be the temporal axial gauge 

n~ = (1, O) 
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In this gauge the polarization tensor is related to the electric screening mass 
by the equation 

2 me~ = Hoo(0, 0) (88) 

This equation is not valid in an arbitrary gauge. The fact that equation (88) 
is true at every order of the perturbation theory in the temporal gauge, is 
based on two facts. Firstly, of course, the temporal gauge admits a Hamil- 
tonian formulation and thus the linear response analysis of the screening 
can be carried out. Secondly, the fact which makes the temporal gauge 
different from all the other gauges that exhibit Hamiltonian formulation 
(e.g., Coulomb gauge) is that the electric field is linear in the potential field: 

E '; = -OoA 7 

and hence equation (88) will not acquire any higher-order corrections from 
the nonlinear terms (as will be the case in the Coulomb gauge, for example). 
Hence, because the plasmon is physically based on the screening and 
because the modified plasmon, calculated in the temporal gauge, takes the 
screening into account up to a higher order, we argue that the modified 
plasmon, defined by equation (85), represents the dominant contribution 
beyond the order O ( g  4 In g) and hence its inclusion will be relevant. 

In QED we do not have a term of the order O(e a In e), as mentioned 
above, owing to the different infrared structure of Hoo(0, ~o) (i.e., the absence 
of a linear term in r Thus the correlation in QED is given simply by 

QED 12,n.4 (2p + m2)np + O ( e  4) (89) 

It is interesting to take here the classical statistics limit. In this limit 
the distribution n(p) is approximated by its Boltzmann counterpart 

np ~ e - ( ~  -~')/T 

The integral in equation (85) can now be expressed by the Bessel function 
of the first order K I ( Z  ) and its derivative resulting in 

r e3T e 3v'/2T mTK1 -m2K~ (90) 
~QED 1 2 4  

Using the large argument approximation for Kl(z) 

(~r ']  '/2 
K I ( Z )  ~ \-~Z] e-Z 

we obtain the nonrelativistic value T<< m, /z'<< m 

~-~(plas) __ e3(m9TT)  1/4 (Trx~ 3/4 e3r~'/2T 
(91) QED -- 12r 4 \2] 
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This is the Debye-Hiickel formula obtained as early as 1923 by a purely 
classical treatment (Debye and Hfickel, 1923). 

4.4. Thermodynamic Quantities 

Let us here summarize the results found above. The thermodynamic 
potential for arbitrary my and ~y is obtained up to O(g 4 In g) by summing 
the contributions from equations (61), (67), (79), and (83). However, we 
shall now concentrate on the ultrarelativistic limit, my--0 (but keeping the 
chemical potentials arbitrary) in order to simplify the discussion. In this 
limit, the pressure is given by (the modified plasmon has not yet been taken 
into account in these equations) 

p= [( N2- I + 7NNf/4)T4+15 ~. (T20}+ O})] "/7"2/45 
f 

-(N2-1)[(N+5Nf/4)T4+9~(T. 20}+O})]g2/144 

+N(N2-1)[(2N+Ny)T2/6+~fO}] T2g41ng/32~2+O(g4) 
(92) 

Here 0}=/z}/2~ 2. The entropy density s--ap/aT and the specific heat 
cv = Os/OT can now be obtained, from equation (88) yielding 

s----47r~ {[4(N-21)+7NNf]T3+3OTY.@}f - -  

144 (4N+SN)r~+18r20} g~ 
f 

N 2 - 1  
2(2N+NI)T2+3EO} )T~+E 0e.i g3 

+ 36~r f f 

+N2-------~I N [(2N+ Nf)T3+3T~ O}] g41n g+O(g 5) (93) 
48'/7 -2 f 

and ~ } 
cv = ]-~ [4(N 2 - 1) + 7 NNf] T 2 + 10 F. 0} 

f 

N2-1 [(4N+5Ny)T2+6~ 0}] g2 
48 L f 
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N 2-1 (2N + Ns)[2(2N + Nj) 7"2+ 5 0}] 
-~ 727r [ (2N+Ny)T2/6+EyO}]  1/2 Tg3 

+ 1--i 7  N ( 2 N + N ) r 2 + 2 o }  g 4 1 n g + O ( g  4) (94) 
f 

The average number density n s = nqs- nos representing the excess of quarks 
or antiquarks is 

Op 2r 2 N 2 - 1  
nr . . . .  N (  OfT2 + 203f)- ( OfT2 + 203f)g 2 

Otxf 3 8 

N 2 - 1  T ( 2 N + N f ) T 2 / 6 + Y .  0 Ofg 3 
+ 4"t7" f 

N 2 -  1 
+l--i--~ 2 NT2Osg 4 In g + O(g 4) (95) 

The reader should note that in equations (92)-(95) we have not yet 
taken into account the renormalization group improved coupling constant 
g = g( T, tz). That will be discussed in Section 6. However, the differentiation 
of the coupling constant with respect to the temperature or chemical poten- 
tial in equations (92)-(95) will yield a contribution of the order O(g 4) up 
to which order we have not extended our calculations. 

5. G R O U N D  STATE OF FERMION GAS 

At zero temperature the ferrnion states in the Fermi sphere are filled 
up to the Fermi energy/zi (the index i corresponds to the flavor i). This is 
seen by taking the zero-temperature limit of the Fermi-Dirac distribution 

nT, (p) ~ O(tzi- Ep) 
(96) 

n~(p)-->O 

This ground state of the Fermi gas is characterized by the zero-temperature 
limit of the thermodynamic potential, 12( T = 0). The energy density of this 
ground state is given by 

e = 1 2 ( T = 0 ) + / 2 .  /V (97) 

where/2 and ~r represent the chemical potential and average number density 
vectors, their components corresponding different flavors. 

In this section we shall discuss this ground state of the quark system 
in QCD (and of the electron system in QED). Our discussion here is, for 
the overlapping parts, essentially the same as that of Freedman and 
McLerran (1977), and the reader is urged to consult this reference for more 
details. 
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In Section 5.1, the zero-temperature limit of the ideal gas formula and 
the exchange correction are obtained and those contributions are examined 
in different limits. In Section 5.2 we give a detailed calculation of the 
plasmon term (of the order g4 In g) retaining the masses nonzero. Finally, 
in Section 5.3, we discuss the fourth-order correction. 

5.1. Ideal Gas Approximation and Exchange Term at Zero Temperature 

Using the formula (96) we can find the ideal gas approximation from 
equation (61) 

12o= 127r2~ / txi(tzE_m2)l/2 tz2_ mE +3 41nlXi+(tzi--mi) 1 
�9 2 mi ~ d 

(98) 

The exchange term is obtained similarly from equation (67). Note that only 
the quark loops (Figures 3a and 3e) contribute at zero temperature. T h e  
result, after performing the integration, is 

~'~exeh-- N 2 -  1 g2 { [ 6 4 ~  4 i~ 3 /zi(/zi2 _ _  /.hi )21/2 - -  m 2 In  ~iq-(tx2--m2)U2] 2 m i  

-- 2(/z 2-  m~) 2} (99) 

In the ultrarelativistic limit (/~ >> m~), the above formulas reduce to 

ao+l-~ex~h= 12~2 64~ "4 g2 ~/z4 (100) 
i 

This would have been obtained also from equations (62) and (68) by putting 
T = 0. The nonrelativistic limit is given by 

S (1~ 2-m~) 5/2 S 2-1g2 . 
~'~~ + ~'~exeh -- 15~2 ~/ mi 3 2 4  ~ (~- -m2)  2 (101) 

Note that f~exch is positive in the ultrarelativistic limit, but has a negative 
sign in the nonrelativistic limit. [This also occurs at T # 0 ;  see equations 
(68), (69). The contribution corresponding to flavor i changes its sign at 
the value 

k~i = 2.723 mi 

At a given rn~ the most negative value of the exchange contribution (corre- 
sponding the flavor i) is 

4 N 2 - 1  2 
~xch(/X, = 2.188mi) = --4.511 m~ ~ g 
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5.2. Plasmon Effect 

In this section we shall evaluate the ring diagrams of Figure 4. In these 
diagrams the matter part of the lowest-order polarization tensor insertion 
comprises only the quark loop (Figure la), at zero temperature. The vacuum 
part H(~ gives here, like at T #  0, corrections of the order O(g4). Hence, 
we need take into account only the/x-dependent part AH. 

There are no differences between QED and QCD in the topology of 
the diagrams under consideration. However, in QCD, different polarization 
tensor insertions can have fermion loops of different flavors. Thus the result 
will be mixed in the flavors. Hence, we will first consider QED in order to 
see more clearly the structure of this plasmon term as a function of the 
ratio/x/m. Later we shall give the correspondent equation for several flavors. 

The diagrams of Figure 4 can be summed giving 

1 f d4q {ln(l+AII~176 [ 1/AII~ 
O, pl = ~ J 

(102) 

Note that here, unlike at T r 0, we cannot expand the contribution of spatial 
photons up to O(e4), because the fourth order diagram consisting of spatial 
photons is infrared divergent here. 

The evaluation of the integral (102) is more easily performed by using 
Euclidean spherical coordinates, equation (50). Using the shorthand 

Al(q 2, ~b) - (1/sin 2 ~b)AF[oo(q 2, ~b) 

A2(q 2, th) = l[AII~(q2, tb) - (1/sin 2 th)Al-Ioo(q 2, ~b)] (103) 

equation (102) becomes after the trivial integrations 

~'~p1-(2,/7) 3 dq2q2ao d~bsin~b In 1+ q2 

+21n 1 +A2(q~ 4~) q2 q2 (104) 

In order to extract the dominant contribution we write equation (104) as 

Io~ f ( [  ] 1 q2 ~/2 AI(0, ~b) 
~-[pi-- (2~)3 dq2 ao d~b sin ~b In 1+ q2 

+2 ln[1-r A2(0, ~b)] 1 [A~(0, ~b)+2A22(0, ~b)] q2 2qE(q2+/X2) 

1 } 
q2[Al(0,~)+2A2(0,~)] +O(e  4) (105) 
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Here we have neglected infrared convergent contributions of the order 
O(e4). Note the similar arbitrariness in the third term of equation (105), 
as we found in:equation (81). The term #2 in the denominator can be 
replaced by any constant (different from zero and independent of e). Here, 
like at T # 0, the different choices give the same result apart from a contribu- 
tion of the order O(e4). 

The integrations over q2 can now be done exactly. Omitting again 
contributions of the order O(e 4) we get 

lne2 f ~/2 [1 2. 0 ] 
f~P'-(2w) 3 Jo dq5 sin (h [~AI( , &)+A~(0, q5) (106) 

Now we insert equations (57), (59) to equations (103) obtaining 
e 2 1" 2 2 1/2 

2 2 1 / 2  2 arctanr %cmL) I} . 0 ~ )  A ' ( 0 ' 4 ~ ) = ~ 5 / # ( #  - m )  - #  cot(/) k #cot~b _lJ 

e 2 

- ( m  2 sin-~5~)cot ~b arctan [ (# 2 -  m2--)1/21~ (108) 
L #cot~b J J 

Inserting equation (107), (108) to (106) we can write after some lengthy 
manipulation the result in the form 

~pl-- 128~r 6 #4fl 

where 

#4fl(m/# ) = ( 6 - 4  In 2 ) # ( #  2 -  m2) 3 /2 -  5#2(# 2- m 2) 

# + (#2_ m2)1/2 
+ 4#3(# 2-  m2) 1/2 In 

# 
# + ( # 2 - -  m2)1/2 

+ 6#m2(# 2 -- m2) 1/2 In 
25/3# 

-- ( 4m2 #2 + m 4) ( ln # + (# 2---- m2) l/2) - 

2 4# 2 + m2 
+ m  # m-- 2 X(a). 

Here the function I(a) is defined by 

i ( a ) = f  ~ dx l n X + l  
, a2x~---1 x~ll  

(109) 

(110) 
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where 

/x 
a = (/,2 - m2)1/2 ~-~ 1 (111) 

The function l(a) cannot be expressed as a finite sum of  elementary 
functions. However,  we can get a power series in 1/a 2 for it 

1 1 
I(a) = n~=, ~ [2 In 2+  q~(n) - qJ(1)] ~ (112) 

where 0(x)  is the di-gamma function satisfying 

n--1 1 
0(n ) -~O(1)=  Y~ ~ (113) 

k=l  

Note that in the nonrelativistic limit a >> 1. Hence, our series (112) is 
a nonrelativistic expansion for I(a). For the ultrarelativistic limit the last 
term in equation (109) containing the function I(a) is small, however, 
because it is proport ional  to m 2 In 2 rn/l~. When we take these two limits of  
equation (109) we find them to be in agreement with the earlier results. 
Firstly the ultrarelativistic limit is (Akhiezer and Peletminsky, 1960; Freed- 
man and McLerran, 1977) 

e 4 In e 2 4 
~p l (m=O)  = 1287r6 /z (114) 

On the other hand the nonrelativistic limit is 

e 4 In e 2 
,.Qp, = 48~. 6 ( l - I n  2)tz(/x 2 -  m2) 3/2 (115) 

In this limit only the first term of equation (106) contributes. This part  is 
associated with the timelike photons and its nonrelativistic limit corresponds 
to the interaction of the electrons through the instantaneous Coulomb field. 
The second part  corresponds to the interaction of the electrons with the 
magnetic field induced by the other moving electrons. Its contribution is 
reduced in the nonrelativistic limit by a factor of  tz'/m. 

fl(m/lz) is shown as a function of Ix/m in Figure 5. When tz>~3me, 
the function differs from the ultrarelativistic limit by less than 18%. 

In QED, these higher-order corrections are less important since the 
coupling constant is small. The situation is very different in QCD, where 
the coupling constant is of  the order unity. What we need to do in QCD is 
to replace e 2-* g2/2 and sum over the flavors in the definition of the functions 
A~ [equations (107), (108)]. This summation causes some extra complexities 
in the ~b integration of equation (106). The calculations are lengthy and 
tedious, and we shall omit them here. After some manipulation we get the 
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plasmon term in the form 

~'~ Q C D  - -  
p l  - -  

where 

g4 in g2 2 2 f  2 2 Iz~lxj 5 ( a ~ - l ) ( a j - 1 ) l n a ~ + l  a j + l  
256r ~ - -  [ In i,j aiaj 2 8 aia j ai - 1 aj - 1 

[3 a i - 1  a i + l  1 5a~-3  a i + l  
+ 2a~ 4a~ aj ln lnaJ+  + l n - -  ai - 1 aj - 1 2a i ai + aj 

( a ~ . - 1  a2 -1a j .+  (a/2 -- 1) (______aa2 - 1)) 

+ \  2aj ai+ 2ai 4aiaj / 

fo~ dx In a i+xl ]+[ i~-* j ]}  
• aj x2-1  lai----~[-I 

(116) 

/zi .1/2 

It can be easily checked that the above formula leads in the one-flavor 
case to equation (109), as it should. Furthermore, we find that the zero-mass 
limit is in agreement with the earlier results (Freedman and McLerran, 
1977); putting ai = 1 we get 

g4 In g2 
~-~pl(mi--0) = 512qr6 (/22) 2 (117) 
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We can also derive from equation (116) a nonrelativistic expansion as we 
did in QED case. However, it is not worth doing this because the situation 
where all the flavors are nonrelativistic does 'not correspond to any known 
physical circumstances. A more realistic case is obtained, if we consider 
two massless flavors (u and d quarks) and take the mass of the strange 
quark into account, and neglect the heavier flavors. Equation (117) then 
reads 

lqp, g41n g2 [ (m~) (m~)] 
- +/~f~ + 2(/z. +/Zd)~f2 (118) 512q7  "6 (~1 2..~_] 2 ) 2  2 2 2 2 

Here fl(rn/tx) is given by equation (109) and f2(rn/lz) is defined by 

f2 rn~ = 2  3 - l + l n  2 + In In a +2aI(a) 
a a + l  4a a - 1  4 

1 (ln a+ 1"~2+ d x  lna+X in a+l] 
- -  - - - x  (119) 

+ 2 \  a - ~ - l ]  1 x2-1 a - x  a - l /  

where I(a) is given by (110) and 
2 a = ml(~z~- m]) 1/2 

The function f2(m/t~) is drawn in Figure 6. It' we compare the functions 
fl(m/lz) andf2(rn/lx), we note that f2 reaches its ultrarelativistic value more 

05 

, I 
1 5 10 #/rn ~ 

Fig. 6. The function f2 as a function of I.~/m. 

E 
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rapidly than fl. When/zs >> ms we get from equation (119) 

tz ms+ O(m 4) (120) 5127r  6 (/.~ 2) 2 _ 5 - -  -2 2 

This equation, together with equations (98), (99), represent the situation in 
the plasma phase in the neutron star core. There P~s =/~d --~/~, ~-- 500 MeV. 
Hence, if we use ms --~ 150 MeV, our expansion parameter in equation (120) 
is 

m]//x~-- 0.09 

(o) (b) 

(cl 

Fig. 7. The O(g 4) diagrams not included in the ring 
diagrams. In QED there are only the diagrams (a, b). 
The counterterm diagrams are not shown explicitly. 

which is rather small, and we see from Figures 5 and 6 that the curves 
comply with equation (120) rather well at large/~s. 

5.3. Survey of the Higher-Order Calculations 

In the order O(g4), QED and QCD differ essentially because the 
non-Abelian structure of QCD appears for the first time in this order, and 
hence the topological structure of the diagrams is no longer the same for 
these two theories (see Figure 7). Also the existence of more than one flavor 
gives a rather complicated structure to this fourth-order term in QCD. 

The evaluation of the fourth-order term also includes, besides the 
diagrams of Figure 7, all the O(g 4) terms of the ring diagrams (Figure 4), 
which we ignored in the previous subsection. At the three-loop level [order 
O(g4)] there exists only calculations in the massless limit, and (for QED) 
in the nonrelativistic limit. 

Combining all contributions, the QED thermodynamic potential is at 
m = 0 (Freedman and McLerran, 1977) 

4 [ 3o 
12= 12 2 1 2~r 2 ~ - ~  In +(2.11+0.12) 

(121) 
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Here a is the fine structure constant a = e2/47r and t-~0 is the Euclidean 
subtraction point. 

For QCD the corresponding formula is (Freedman and McLerran, 
1977) 

4 N llN-2Nr(a~21n~_~2~2 

OL 2 Ot~c 
-(f i2)2(N2-1)(4-~) (21n~--~-0.476) -\~-~](ac] 2(N 2 1)F( tz ) ) (122)  

Here ~ = g2/4"n" and the function F(tz ) is given by 

F ( t z ) = _ 2 • _  2 21n~___~+ 2 4 I ff-  l /z IZ, ~ (/z,-/z~) In 
i [~  i > j  -" ].Li[.Zj 

+8/zi/zj(Iz~ +/z 2) In tz~ + I z . _ .  ~ 2 4 4 ] /x, m 3 (/~' - /z j )  ln/Z~mJ" (123) 3 

It is worth noting that the contribution of the order O(g 4) depends on 
the renormalization scheme. (Equivalently: it depends on the definition of 
the charge.) Note also that a different choice of gauge leads to a different 
definition of the coupling constant and hence the result depends on the 
gauge as a part of the renormalization prescription. The above formulas 
have been calculated in the Landau gauge using the momentum space 
substraction scheme. (For the relation between the couplings in different 
schemes, see Celmaster and Sivers, 1981.) 

In QED it is interesting to consider the nonrelativistic limit. There the 
energy per particle, which is related to the thermodynamic potential by the 
equation 

E/N=tx _ ~ / 0 ~  (124) 

has been calculated up to the order O ( e  6 In  e2). Reexpressing equation 
(124) as a function of N~ V instead of/z and introducing the dimensionless 
variable 

(4~rN~ 1/a 
rs=\ 3 V] ma (125) 

we can write equation (123) as 

E' a b 
- -= - -5+- -+  c In rs+d+ers In rs+. �9 �9 (126) 
N r~ r~ 
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where E ' / N =  E / N - m .  The three first coefficients can be obtained by 
substituting equations (101) and (115) into equation (124) and using 
equations (5) and (125). The fourth and fifth terms have been calculated 
numerically (Gell-Mann and Bruckner, 1957; Can and Maradudin, 1964) 
(see also Onsager, Mittag, and Stephen, 1966). The fifth term in (126) 
rs In rs comes from the summation of the next to leading (infrared) divergen- 
ces in the ring diagrams of Figure 4. In expressing the energy per particle 
by the binding energy of the hydrogen atom (Eo = 1 Rydberg = 13.6 GeV), 
we get (Fetter and Walecka, 1971) 

E'  [ ~ ( ~ ) 2 / 3  1 3 (~-zr) 1/3 1 2 
~ = E o  - -  2 - -  --+--~ (1-1n 2) In rs 

rs 2~" rs 7r 

- 0 . 0 9 4 +  0.018r~ In rs + O(rs)] (127) 

It is worth noting that in this nonrelativistic limit (also true in QCD) 
the expansion parameter is 

m e  2 

r~ (p2_m2)l/2 

which is small only if the chemical potential is not too close to the mass; 
in other words, if the system is not too nonrelativistic. In the electron gas 
of a metal this does not cause any serious problem because the density of 
the electron gas (and consequently /,) is fixed by the properties of the 
positively charged background lattice, and hence the difference/z - m can- 
not ever vanish. 

However, if we consider QCD, we have several flavors and it is possible 
that one of the chemical potentials in some system (for example, in neutron 
star) can pass the threshold/zy ~ mp If we extrapolate this behavior of the 
nonrelativistic limit to higher orders, we find that in the order g12 the 
contribution will be 

g12m5 

(/z 2 -  m2)1/2 

Hence, all the terms of order g12 or higher diverge when/.t goes to m. This 
is probably a reflection of a nonanalytic behavior (in g2) of the energy and 
the other thermodynamic quantities near the threshold. 

6. EQUATION OF STATE AND PHASE TRANSITION 

In the preceding chapters we calculated perturbatively the thermody- 
namic potential. In order to improve our calculations we must take into 
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account the renormalization group improved coupling constant a = 
a ( T/AQcI:,,/~/AQco). For simplicity, we have neglected the chemical poten- 
tial, and thus have for massless QCD (see Caswell, 1974) 

Not (T)  _ Ng2( T) 
71" 4"n "2 

6 

= ( l l N - 2 N y )  in T / A  

(34N 2 - l O S S f  - 3 N f ( N  2 -  1 ) /N)  In in T / A  - g  
( l l N - 2 N f )  3 In 2 T / A  

+o (in2 ~/a) (128) 
As we found in Section 4, the perturbative expansion for the thermody- 

namic potential (equally for the pressure p = -12)  is not analytic in the 
coupling constant a, but has nonanalytic terms of type - a  "+1/2 and also 
logarithmic-type contributions - a  '~/2 In ot. Hence we have in general the 
expansion for the pressure 

p/T4=c+ ~ an[ot(Z)/Tr]l+n/2+ ~ bn[ot(T)/'n']2+n/21not(T)/Tr (129) n=0 b=0 
Note that in QED the logarithmic terms are absent. 

For QCD the coefficients c, ao, al, and bo are known. If the quarks are 
massive, the coefficients are functions of the ratios mr/T. To be more specific, 
we put N = 3 and regard u, d, and s quarks as massless and ignore the 
contributions of the heavier flavors. After substituting the coefficient calcu- 
lated in Section 4, we get 

p=,n.ET4(19 3ot(T)2,/T (~____~) [ ~ ] 3 / 2  

The equation of state can be obtained by using the equation 

e=  OT 

yielding 

-- f'a<q : L z  ,,-c, _ ~  (3__._)ot5,2-2 (~)  3 ln-~] + o(ot 3) ( 1 3 2 ) - -  
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The sound velocity vs is obtained by 

2 dp 1 9{3a'~2+24"v/213a~5/2+2413a'~31na---+O(a3)t l / / - - t /  
VS-de 3 1 9 \ 7 r /  19 \'rr ] 19 \7r]  r (133) 

We now eliminate the temperature from equations (130) and (132) in order 
to get the equation of state in the form p =p(e).  The result is 

3 [  10.1 46.7 10.0 In In e/eo ln3 e/eo ( ~ ) ]  
p= 1 ln2 e/e-----~o+lnS/2e/eo + 0  (134) 

where eo-  A 4. 
Equations (130)-(134) are evaluated consistently up to the order the 

perturbative calculations in Section 4 allow. However, as we discussed in 
Section 4, these results are reliable only when g2 is extremely small, i.e., 
when T is extremely high compared to A. When the temperature is lowered, 
the plasmon terms overwhelm the exchange correction and finally even the 
ideal gas term. Hence at these lower temperatures we must use the "modified 
plasmon," which takes into account the dominant contribution beyond the 
order O(o~ 2 In a). Equation (130) then reads 

(19 3ce(T)+ 8 ~3ot(T) r l _  5_._5_(3o~(T)'~1/2]13/2 
P='n'T4 3-6 2"rr 4,,/2\ ~r ] J J  

+32(Ls =rl- 4~v/2\ ~r ] J 

k 4,g~\ 7r } JJ}  (135) 

The pressure curves corresponding to different orders of the perturba- 
tion theory have been drawn in Figure 8. Using these curves, we shall now 
try to estimate the critical temperature where the phase transition takes 
place. However, strictly speaking, we are not able to extract any accurate 
information about the phase transition without knowing the equation of 
state of the hadronic phase. Nevertheless, what we shall do is to try to get 
at least a lower bound for the transition temperature. 

The point where the curve (po+p,~) crosses zero has been used for 
estimating the phase transition temperature (Kalashnikov, 1984). This yields 

Tc ~> 2.1AQcD (136) 

The inequality is given here because the pressure in the hadronic phase is, 
of course, nonzero and hence the phase transition takes place before the 
quark phase pressure reaches zero. If we take into account all the calculated 
corrections up to  O(g 4 In g) and use the modified plasmon we get similarly 
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Fig. 8. The pressure as a function of the temperature. The subscripts denote the order of 
perturbation theory./~ is the pressure when the modified plasmon is used according to equation 
(135). 

from the point where/~ crosses zero 

Tc >~ 2.4AocD (137) 

It should be noted that the electric screening mass provides a similar 
estimate. Because mel = 0 in the confinement phase, we can estimate the 
phase transition temperature by ignoring the higher terms and setting the 
r.h.s, of equation (4.27) equal to zero. This gives a slightly smaller value 
for the transition temperature 

Tc ~ 1.9AQcD (138) 

However, all these equations (135)-(138) should be considered only as 
order of magnitude estimates. In any case, the curves (po + P~) and/~ support 
the idea that a phase transition from the quark phase to the hadronic phase 
occurs when the temperature is lowered. However, in order to get better 
information about the phase transition some information about the hadronic 
matter is also needed (see for example K~impfer and Schultz, 1984; Suhonen, 
Dixit, and Turunen, 1984; and references quoted therein). 

Note that we have here neglected the bag constant, because its inclusion 
will not change the qualitative picture. 

7. SUMMARY AND OUTLOOK 

In this paper we reviewed the finite temperature and density QCD and 
QED from the perturbative viewpoint. Using the formalism of the finite T 
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and/x field theory, we calculated the thermodynamic potential. We extended 
the calculations up to the order O(g 4In g), keeping the masses of the 
fermions arbitrary. This was done for T ~ 0, /~ ~ 0 in Section 4, and for 
T = 0, /z ~ 0 in Section 5. The arbitrariness of the masses in this context is 
rather important because in the quark phase, which can possibly be created 
by means of heavy ion collisions, the temperature will be a few times the 
strange quark mass, and thus the strange quark cannot be regarded as either 
ultra- or nonrelativistic. The same is true in the cores of the neutron stars, 
where T----- 0, /z ~ ms. 

We further examined the phase transition and found that the perturba- 
tive calculations for QCD support the idea of two phases, unconfined and 
confined, separated from each other by a phase transition near Tc -~ 2AQcD. 
However, the predictions that can be made when one uses only perturbative 
QCD are rather limited. 

Concerning further studies one can ask what can be done next in the 
perturbation context. At T = 0, the thermodynamic potential is known in 
the massless limit up to the order O(g4). The next step will be the extension 
of the calculations up to O(g 6 In g). For this extension, the evaluation of 
the polarization tensor is needed partly up to the two-loop level. Further- 
more, the calculation with arbitrary masses should be extended up to O(g4). 
At T ~  0 the order O(g 4) is still lacking. This calculation will be more 
difficult than the corresponding calculation at zero temperature for two 
reasons. One is that the Fermi-Dirac and Bose-Einstein distributions make 
the integrals more complicated. The other is that unlike at T = 0, where all 
the ring diagrams that have infrared divergences are free of ultraviolet 
divergences, at T ~ 0 there exists a ring diagram having both singularities, 
which will cause some extra complexities. 

Furthermore, if one goes to higher orders at T ~ 0, one must finally 
face the infrared problems associated with the "magnetic sector" of QCD 
(Linde, 1979, 1980; Gross, Pisarski, and Yaffe, 1981). If we consider the 
spatial part of the polarization tensor, we find that in 170(0 ,/~), the first 
term at small /~ the term of order -/~T, has a negative sign [see equation 
(46)]. This "wrong" sign causes a tachyonic-like pole in the full propagator 
at nonzero /~, which must be cured before the order O(g 6 In g) in the 
thermodynamic potential can be calculated. The reason is that the part of 
the O(g 6 In g) contribution that arises from the ring diagrams having spatial 
gluons, equations (73), is not real unless the spurious pole is removed in 
some way (for example, by the higher loop contributions in the polarization 
tensor). The next order O(g 6) is even more difficult. To calculate this one 
needs to know the magnetic mass that is still lacking (see the discussion by 
Toimela, 1985). 
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One interesting prospect for studying the field theory at finite T and 
/x will be the examination of the running coupling constant as a function 
of both variables T and /x. Some knowledge about the running coupling 
constant, when the ratio T/lz varies will be especially important in the 
context of heavy ion collisions, because in the central region T >>/z, whereas 
in the fragmentation regions T - / x .  

In this paper we have omitted several interesting topics at T, /x # 0, 
that can be discussed in the context of the perturbation theory. One is the 
collective excitation spectrum of a QED or QCD plasma that can be obtained 
by setting the inverse of the full propagator equal to zero. The dispersion 
relations and damping constants can be calculated perturbatively (Fradkin, 
1965; Kalashnikov, 1984; Kajantie and Kapusta, 1985; Klimov, 1981). Also 
not discussed here are the processes, where the initial particles are in thermal 
equilibrium but some of the final particles interact so weakly that they 
escape the finite size system and hence one can consider them to scatter 
into the vacuum. This is what happens in the QCD plasma formed in heavy 
ion collisions, when one examines the outcoming, electromagnetically 
interacting particles, the leptons, and photons (Feinberg, 1976; Shuryak, 
1978; Domokos and Goldman, 1981; Kajantie and Miettinen, 1981, 1982; 
McLerran and Toimela, 1985). 

In this paper we have used the imaginary time formalism. The reader 
should note that there exists also another possible formulation of perturba- 
tion theory at finite temperature, the real time formalism (Keldysh, 1964; 
Niemi and Semenoff, 1984; see also Umezawa, Matsumoto, and Tachiki, 
1982; Semenoff and Umezawa, 1983). This method has the advantage that 
there is no frequency summation; in some sense one can say that the 
frequency sums there are done intrinsically, because the propagators include 
the Fermi-Dirac or Bose-Einstein distributions. Recall that in the imaginary 
time formalism the thermal distributions arise when the frequency sums are 
done. However, the price for getting rid of the frequency sums is that in 
the real time formalism the propagators and self-energies are 2 x 2 matrices 
and, moreover, the multiple 8 functions here have to be regularized by 
replacing them by appropriate limiting expressions, which involve at least 
the same amount of work in the calculations as the frequency sums do. 

The most important reason why we here have preferred the imaginary 
time formulation is that we have discussed only static quantities and thus 
we did not need to continue analytically our equations from imaginary to 
real energy. Hence, the advantage of the real time formalism having 
originally real energy is of no use here. Moreover, the nonanalytic terms 
(in g2) discussed in Section 4.3 arose only from one term in the appropriate 
frequency sum, hence making the use of the imaginary time formulation 
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very convenient. Nevertheless it would be interesting to see how the result 
obtained in Section 4.3, would arise in the real time formalism. 
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APPENDIX 

We derive here the results presented in equations (53), (54). Using 
equations (51), (52) we write AIIoo and AII~ in the form (we delete here 
the sum over flavors) 

g2 [I0q 2m2--q21 ] 
AH~ =-~ -i ~q s-~n ~ 1j (A1) 

AIIoo = 2~r2 2q sin 4~ 

where 
~* (~2-m2)1/2 dp 

/O=Jo g , ~  (a3) 

~ (,~-,,,v" ~ (2p sin 4' + q)~+ 4E~ cos ~ 4' 
I~ = .Jo Ep p In (2p sin ~b- q)2+ 4E~ cos 2 ~b (A4) 

l (.u,2-- m2)l/2 (2p sin 4, + qY+4E~ eos~ 4, 
I 2 = j o  @pEp' (A5) In (-~p sin ~b - q)2+4E2 cos 2 ~b 

f (,~2_,.2),/2 ( pEp sin 2~b ) 
K = .,0 dpp arctan E2 cos 26  + m 2 sin 2 ~b + q2/4 (A6) 

The first integral Io is trivial: 

I01.~(l.1,2--m2)1/2 m 2 m2)1/2 
2 2 In/z + (/.L 2 - (A7) 

m 

In the second integral 11, we integrate by parts and use the substitution 

P X-- m + (p2+ m2)1/2 

This gives 

I1 =/z In 4/z2 c~ 4) + [2(/z2 - m2)1/2 sin ~b + q]2 4- J1 
4/z 2 cos 2 ~b + [2(/z 2 - m2) 1/2 sin ~b - q]2 
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Jl = - 8  rn dx \ 1 - x 2] 
d O  

4 x +  4(1--X 2) sin ~b 
x (4x sin ~b + 4(1 - x2))2+4(1 + x2) 2 cos 2 ~b 

(6-~-6)], 4 = q / m  

(A8) 

Factorizing as a product  of  two second-order polynomials the fourth- 
order polynomial  in the denominator  in the following way: 

[4x sin ~b + 4(1 - x 2 ) ]  2-t- 4(1 + x2) 2 COS 2 

= [{[(4+ 42) 1/2- 2 sin ~b]x- 4} 2 + 4 cos 2 ~b] 

x({[(4+42)1/2+2sinrh]x+4}Z+4cos2 cb)/(42+4cos2 0)  (A9) 

the integral becomes elementary and leads 

/z + (/.~2_ m2)1/2 (4m2+ q2)~/2 sin q5 
-/1 = q sin th In 

m 2 

{[(4+ 42) 1/2- 2 sin ~b](ix 2 -  m2) t /2 -  4(~  + m)} 2+ 4(tz + rn) 2 cos 2 tk 
x In ( [ - - ~  ~ s-~n ~ ~ ~  + ~-) c-~s2 g 

[ (4+ 42)1/2_2 sin ch]( l~2-rn2) l / z -4( t z+m ) 
+ q cos q~ arctan 2(/~ + rn) cos 4' 

- arctan [(4 +~2)1/2 ..~ 2 sin qS] (/x 2 -  m2) 1/2 + q(/.~ + 

- (~b-~ -qS) (A10) 

Grouping together the logarithms and arcus functions we get 

I~ =/x  In 
4/z 2 cos 2 ~b + [2(/z 2 - m2) 1/2 sin t h + q]2 
4/x 2 cos 2 ~b + [2(/z 2 - m2) 1/2 sin ~b - q]2 

/.t + (tz 2 -  m2) 1/2 (q2+4m2)l/2 sin th 
+ 2q sin ~b In 

m 2 

. 2/z2(2m2+ q2) _ 21~q(q2+4m2)~/2(tz2 - m2)1/2 _ m 2 ( q 2 +  4m 2 sin 2 qb) 
x l n ~ q ~  2tzq(qZ +4m2)l/Z(tz 2_ m2)1/2 m2(q2 +4m 2 sin2 th) 

. [~(l~2-rn2)l/2sin2cb~ 
- q c~ ~b arctank ~-2 c-'-~s 2 ~ ) ( A l l )  
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The integral 12 can be similarly modified to 

3 In ~ 2  c~ th + [2(/* 2 - m2) 1/2 sin ~ + q]2 I2----~- 4 2 
4/* COS 2 (~ q'- [2 ( /Z  2 --  m 2 )  1/2 s i n  4' - q ]2  

8m33 J0f~"-m)/<~+m)l~/2 dx ~ 1 ~ - " ~ / {  1 + X2~ 4 

4 x +  ~(1 - x  2) sin ~b 
• [4x sin ~b + t~(1 - x2)] 2 + 4(1 + x2) 2 cos 2 ~b 

Toimela 

(~b --> - t h ) ]  (A12) 

Using again equation (A9) we get finally 

1 ~ 3 4t x2c~ b + [ 2 ( / * 2 - m 2 )  1/2sin ~b+q] 2 . 
12= 5 ~/, In m2) 1/2 sin~b 4/x 2 cos 2 ~b + [2(/, 2 -  m2) 1/2 sin ~b - q] 2 t  q/z (/x2 - 

- q  (1 + 2 cos 2~b)q2+ 6m 2 cos 2~b sin ~b In ~ + (/,2 _ m2)1 /2  

2 m 

(q2+4m2)l/2[(1 +2 cos 2~b)q2-4m 2 sin 2 q~] sin ~b 

•  2/z2(2m2+ q2)_21~q(q2+4m2)1/z(/z2_ m 2 ) U 2  m2(q2+4m 2 sin 2 ~b) 
2/x2(2m2+ q2) +2/zq(q2+ 4mZ)l /z( /z2  m2)1/2_ m2(q2+4m2 sin 2 ~b) 

q [ ( 1 - 4  sin 2 ~b)q 2 -  12m 2 sin 2 ~b] cos ~b 

4 

• arctan [/ ,2 ~ + ~ n ~  ~___~ q2/4j ) t z ( / z  2 -  m2) '/2 sin 24~ ] (A13) 

In the last integral K we integrate again by parts and now use the 
substitution 

P 
x - (p2+ m2)1/2 
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This leads to 

1 2 2 [. tz (tz2- rn2)1/2 sin 205 ] 
K = ~ (tz - m ) arctan L/z2 cos 205 + m 2 sin 2 05 + q2/4j 

- 2 m  2 sin 205 f (~-m~),/~/. 
d0 

x 2 (1 + x 2) (~2 + 4 cos: 05) - 4x 2 cos 2 05 
XdXl_x2[(l_x2.)(~2+4cos205)+4x2cos20512+16x2sin2205 (A14) 

After the rearrangement in the denominator 

[(1 -x2)(~2 + 4 cos 2 05) + 4x 2 cos 205]2+ 16x 2 sin 2 2th 

= {[(~2+ 4 sin 2 05)x - ~(~2+4)1/212+4 sin 2 205} 

x {[(~2+4 sin 2 05)x+ ~(~2+4)'/212+4 sin 2 205}/(~2+4 sin 2 05)2 

(A15) 
the integral can be easily done giving 

1( ) K 2 2 _ m  2sin 205+q2cos4 205 

x arctan [/~ 2 ~(tx2 - m2)~/2 sin 205 ] 

(q2+2m2) sin205 ~+( /~2-m2)a/2  q(q2+4m2)l/2sin24 
In 

4 m 16 

21x2(2m2+ q2) _2txq(q2+4m2)1/2(2_ m2)1/2_ m2(q2+4m2 sin 2 05) 
x In ~ _ 2~q(q2 + 4m2)~/2( 2_ rng)~/2 _ m2(q2 + 4m 2 sin2 05) 

(A16) 

Inserting the results from equations (A7), (A11), (A13), and (A16) into 
equations (A1), (A2) we obtain the formulas (53), (54) for Al~oo and AII~. 
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